UNMATCHED

R&D Solutions FOR PHARMA & LIFE SCIENCES

ELSEVIER

Pathway Studio-Assisted Biological Research

Integration of Tools, Data and Expertize to solve a customer problem

Stephen Sharp, Ph.D.

September 4, 2017

Scientific information and data exchange in practice for over 400 years

- Most scientific data is still published in unstructured format
- 17th Century

TRANSACTIONS:
ACCOMPT
OF THE PRESENT Undertakings, Sudies, and Labours OF THE
INGENIOUS INMANY CONSIDERABLE PARTS OF THE WORLD
Vol I. For Anno 1665, and 1666.
In the SAVOY, Printed by T. N. for John Marsyn at the Bell, a little with- out Temple-Bar, and James Allefry in Duck Lane, Printers to the Ryal Society, Sillictlescere Upfell 1746.

Royal Society of London Oldest learned society (1660) Oldest scientific journal (1665) • 21st Century

Scientific literature is exploding

• More than 1M new citations/year in Medline – HOW TO KEEP UP?

If only we knew what is known...

Text mining: analyzing text to extract information that is useful for particular purposes

History of MedScan Technology

- 2001- Ariadne Genomics
 developed MedScan a tool to extract information for biomolecular networks from literature
- 2012 Elsevier acquired Ariadne Genomics and continued to develop MedScan and PATHWAY STUDIO
- 2017- MedScan engine can be used within PATHWAY STUDIO and also independently

IOINFORMATICS

Vol. 19 no. 13 2003, pages 1699–1706 DOI: 10.1093/bioinformatics/btg207

MedScan, a natural language processing engine for MEDLINE abstracts

Svetlana Novichkova, Sergei Egorov and Nikolai Daraselia*

Ariadne Genomics, Inc., 9100 Great Seneca HWY, Rockville, MD 20850, USA

Received on January 11, 2003; revised on February 11, 2003; accepted on March 17, 2003

PATHWAY STUDIO

Human Mouse Rat

From text to fact

Processing of Text using MedScan Technology

MITA TIM

10

- Staged Processing:
 - Sentence tokenizing
 - Word recognition
 - Morphological analysis
 - Recognition of compound lexemes
 - Syntactic parsing
 - Semantic interpretation.

Text Mining with MedScan Technology

Natural Language Processing

The central idea of MedScan's NLP algorithm is decomposing natural language sentences into semantic relationships (which we will also call semantic triplets). Each triplet is designed to represent a single semantic relationship between two singular noun phrases (NPs).

11940574:7 Because **Axin2** has been shown to associate with and inhibit **beta**catenin abundance and function, we hypothesized that **Axin2**, which is affecting proliferation of MEF cells can work in a negative feedback pathway, regulating Wnt signaling and thus controlling apoptotic process.

Triplets identified:

Axin2 associate beta-catenin abundance Axin2 inhibit beta-catenin function Axin2 associate beta-catenin abundance Axin2 inhibit beta-catenin function Axin2 affect MEF cell line proliferation Axin2 work negative feedback pathway Axin2 regulate Wnt signaling Axin2 control apoptotic process

Data Extraction using Elsevier NLP

How MedScan Identifies "Entities" and "Relationships"

Axin - beta-catenin, relation: Binding celltype: hepatocyte Axin -> GSK-3beta, relation: Regulation, effect: Negative celltype: hepatocyte

Solution overview

	Pathway Studio®									
	Kn	owledgeb	ase	Tools						
Biological relations extracted from literature	Manually curated pathways	Ontologies Annota- tions	Structural similarity for chemicals	Variation annotation from public sources	Search Summarization Navigation Visualization	Experiment analysis: • Gene expression • Proteomics • Metabolomics • NGS	Text mining pipeline Easy to use text mining interface			
24M abstracts 3.5M full texts	>1800 pathways						Mining Mercine Merc			

Π

0

Pathway Studio databases

Types of objects (Entities) in the database

Entity	Example
Protein, Complex, Functional class	PARP1, miR133b, IL23, cytokine
Drug, Metabolite, Ion, Chemical	glucose, aspirin, estradiol, cetuximab
Disease	malaria
Clinical Parameter	heart rate, lesion size, Gleason score
Cell Process	apoptosis
Treatment	heat shock
Cell	regulatory T cell

Integrating text with other resources

All recognized terms have identifiers:

- Linking to other databases
- Mapping
- Integrating external data
- Use of ontologies

IUPAC Name: 4-[4-[[4-chloro-3-(trifluoromethyl)phen Molecular Formula: C21H16CIF3N4O3 PharmaPendium ID: Sorafenib Tosylate Rotatable Bond Count: 5 XLogP-AA: 4.1 Molecular Weight: 464.82495

Notes:	This gene encodes a chromatin-	Entrez GeneID:	11545; 142; 25591
110(05)	proliferation, and tumor transfo	 Unigene ID:	Hs.177766; Mm.277779; Rn.11327
	[provided by RefSeq, Jul 2008]	 Swiss-Prot Accession:	A0A024R3T8; B1ANJ4; O35937; P0
Alias:	5830444G22; 5830444G22Rik; A	 Swiss-Prot ID:	PARP1_HUMAN; PARP1_RAT
	polymerase); ADP-ribosyltransfe	 OMIM ID:	173870
	ADPRT 1; ADPRT I; ADPRT1; AI8	 MGI ID:	MGI:1340806
	ADP-ribosyltransferase, nuclear;	 Hugo ID:	270; HGNC:270
	nuclear NAD ADP-ribosyltransfe	 RGD ID:	
	polymerase; poly [ADP-ribose] p	Ensembl ID:	ENSG00000143799; ENSMUSG00
	ribosyl)transferase; poly[ADP-rib		AAA51599; AAA51663; AAA60000
Connectivity:			ABM85752; AC121810; AC_00002
Primary Cell Localization:			AK312339; AL359704; AL359742;
Cell Localization:			CAA46478; CBX74363; CH466555
-	Homo sapiens		NM_001618; NM_007415; NM_01
Human chromosome position:		 GO ID:	0000122; 0000723; 0003677; 0003
Rat chromosome position:	13q26		0023019; 0030225; 0032869; 0040
Mouse chromosome position:	1 84.44 cM	 EC Number:	2.4.2.30
Owner:	public	 KEGG ID:	hsa:142; rno:25591
URN:	urn:agi-Ilid:142	 Homologene ID:	1222
Date Created:	2015-12-18 06:22:20.026	 PIR ID:	A29725; S21163; S26057
Date Modified:	2015-12-18 06:22:20.027	 MedScan ID:	

Rich pathway collections for modeling and experiment analysis

Over 1,800 pathways manually built by PhD level scientists (ongoing project)

- Signaling
- Metabolic
- Cell processes
- Disease
- Immunological
- Expression targets
- Toxicity
- Nociception

To use

- As starting points to build pathways
- In experiment analysis
- In analysis of groups

Interface and tools to find answers to complex biological questions

- Visualization
- Summarization
- Intersect, subtract, and union facts and lists
- Filter by
 - Identifiers
 - Bibliography
 - Tissues, organs, cells, cell cultures, organisms
 - Drugability

Entities	Filter	Relations Filter
Cell Proces	is	Binding
Clinical Par	rameter	Biomarker
Complex		ChemicalReaction
Disease		ClinicalTrial
Functional	Class	DirectRegulation
Protein		Expression
Small Mole	ecule	Functional Associa
Treatment		GeneticChange
		miRNAEffect
		MolSynthesis
		MolTransport
		PromoterBinding 👻

Interface and tools to upload and analyze experimental data

- Upload experimental data or a list of concepts
- Calculate differential values
- Gene-Set Enrichment Analysis: interpret the data using Pathway Studio ontologies and pathway collections
- Sub-Network Enrichment Analysis (causal reasoning): interpret the data using 6.2 M biological relations extracted from the literature

A Natural Killer Cell Activation through Integrins and non-ITAM-Containing Receptors

//CODIE// 2015 SIIA CODIE WINNER

Elsevier R&D Solutions: data, software, capabilities

Literature-extracted biology data: from disease mechanisms to targets

- What causes the disease of interest?
- What is the disease mechanism?
- What is it similar to?

Pathway Studio[®]

Rare diseases – when every piece matters

Nick Sireau at TEDx ImperialCollege https://www.youtube.com/watch?v=B4UnVIU5hAY

- Patients community
- Collaboration with medical researchers
- Drug repurposing candidate
- Fundraising
- Clinical Trial

is a UK charity that is building the rare disease community to raise awareness, drive research and develop treatments.

is partnering with Findacure scientists to help identify and evaluate treatments for congenital hypersinsulinism

Congenital hyperinsulinsm (CHI)

- A rare genetic disease
- Permanently excessive level of insulin in the blood
- Develops within the first few days of life
- Can lead to brain injury or even death
- In the most severe cases the only viable treatment is the removal of the pancreas, consigning the patient to a lifetime of diabetes

How can we help?

Congenital hyperinsulinism library

In support of Findacure's mission of education and knowledge sharing:

- Access to all Elsevier's ScienceDirect full-text publications covering CHI
- Collection of papers focused on different aspects of CHI
- Collection of papers focused on effects of sirolimus on CHI

		2 0						Q+Search
Congenital Hyperinsulinism	My Ubrary 😰 Biomarkers of Insulin f.	-8						
	Groups	* 🔅	CHI-focused	in Congenital Hyperinsulinis	ian i			
🛿 📗 By disease subtype	 Congenital Hyperinsulniam 			uments Members				Details Notes Contents Environments
	Dy doease subtype Diffuse Ort		Auth		Title Bonarkers of Insulin for the Diagnosis of Hyperinsulinenic Hypoglycenia in	Year Published In 2015 Journal of Pediatrics	Added	Type: Journal Article
Diffuse CHI	Escal CHI		• =		Infants and Children	2015 Gene	Feb 26	A compound heterozygous mutation of ABCC8 gene causing a diazoxide- unresponsive congenital hyperinsulinism with an atypical form: Not a
Focal CHI	Persistent CHL	100	- E1		A compound heterozygous mutation of ABCCB gene causing a diazoside- unresponsive congenital hyperinsulnism with an atypical form: Not a focal L			focal lesion in the pancreas reported by 18F-DOPA-PET/CT scan
	4 Dy study type	\$	• 🖲 Truon	ng, L; Thomton, P	007-Long Acting Sometostatin Analogues: Early Experience in the Treatment of 5 patients with Congenital Hyperinsulinian	2015 Journal of pediatric numling	Feb 26	Authors: W. Zhang, L. Liu, Z. Wen et al.
Persistent CHI	Case reports Cohort studies	= 10	• • Numa	akura, Chikahiko; Hashimoto, Y	Two patients with HNF4A-related congenital hyperinsulnism and renal tubular dysfunction: A directly variation which includes transient hepatic dys	2015 Diabetes Research and Clinical Practice	Feb 26	Mew research catalog entry for this paper
Transient CHI	Genetic studies	\$	• 🖻 3ao,	Yuchen; Lunpkins, Kinberly; T	Intraductal papillary mucinous neoplasm in a neonate with congenital hyperinoulnism and a de novo gemline SKI, gene mutation	2015 Pancreatology	Feb 36	Journal: Gene Year: 2015
	Geographic location Reviews	143	. Show	ederkina, I O; Melkyan, M A; Z.	Epilepsy and neurological manifestations in children with congenital hypering doors	2015 European Journal of Paediatric Neurology	Feb 26	Volume: 572
🖳 By study type	CHE-focused		Denne	ett, James T.; Vasta, Valeria; Z	Molecular genetic testing of patients with monogenic diabetes and	2015 Molecular Genetics and	Peb 25	los.e: 2
Case reports	CHE-related Benier full-text publications				hyperinsulinem Increased plasma incretin concentrations identifies a subset of patients with	Metabolism 2015 Journal of Pediatrics	Feb 36	Pages: 222-226
U Case reports	> II Sectional	- 57			persistent congenital hyperinsulnism without KATP channel gene defects			Abstract: Congenital hyperinsulinam (DHI) is a severe heterogeneous disorder due to divaregulation of insulin secretion fi
Cohort studies	Filter by Authors	· · · · · · · · · · · · · · · · · · ·			Type 2 diabetes and congenital hyperinsulinsm cause DNA double-strand breaks and p53 activity in ?? cells	2014 Cell Metabolari	Feb 26	the pancreats: 77-cells leading to severe hypoglycersia in infancy. 13-fluoro-I-3, 4-dhydroxyphenylalanine positi emission tomography (18F-DCPA-PET)/CT is a useful tool in distinguishing between focal and diffuse disease
	Al Abbas, Bassam Bin	10 12	• 🗖 Yorifu	uji, Tohru	Congenital hyperinsulnism: current status and future perspectives	2014 Annals of Pediatric Endocrinology & Meta	Peb 26	properatively. But recent studies have suggested that the scanning may not be accurate as initially estimated this study we characterize a case of OSI with a compound heteroxygous mutation of ABCCB gene. The results chrical investigation, gene mutation analysis, IBP-CORA FET/CTS com, and pathological examination indived so
📙 Genetic studies	Abdel Khalek, M. Abdelmskosud, Abeer A.		• 🗖 Jindal	al, Radhika; Ahmad, Ayesha; Si	Novel mutation c.597_598dup in exon 5 of ABCC8 gene causing congenital hyperinsulnism.	2014 Diabetes & metabolic syndrome	Feb 26	 new characteristics that have never been reported. The patient was unresponsive to medical therapy with disacoxide and received pancreatectomy twice. Genetic analysis identified a compound heteropygous mutation is
Geographic location	Abdelmoule, M S Abdelmoule, Mohamed Sim		• C Kuna	er, G.; Dhull, Y. S.; Karunanithi,	68Ga-DOTANOC PET/CT minicking renal dynamic scan: Lack of physiological uptake in the spisen of a newborn and the philatary gland in congenital hyp	2014 Revista Espanola de Medicina Nuclear e In	Feb 26	 ABCC8 genes. Imaging with 18F-OOPA-PET/CT indicated a focal lesion in the head of the pancess. The pathological diagnosis was an atypical form of OIC. The patient presented with a phemotype of atypical OIC unresponse to diagnoide. It is considered that a relationship existed between the compound heteroryopus
	Abdolhosseini, Mohammadreza Abdulhadi-Abwan, Maha		· Petra	altené, Indré; Barauskas, Ged.		2014 Medicina (Kaunas,	Feb 26	intersponse to castiskie. It is considered that a reasonamp existed between the compound neperorgious mutation and the atypical form. ISE-DOPA-PET/CT is a useful tool in distinguishing between focal and diffuse for preperatively but the accuracy is not 100%. The scan result is best combined with genetic analysis and intra-
Reviews	Abelovich, Dvorah Abobski, A		- Faletr	ta Finio: Atheneseits Frema	Congenital hyperinculnism: Clinical and molecular analysis of a large Italian	Lithuania) 2013 Gene	Feb 26	operative biopsy to confirm the histological subtypes. The combination will provide the optimal strategy for the surgical treatment of patients with CHE.
Cut forward	Abraham, Mary Abrams, B Abu-Lichdeh, Abck/isalam		- E		cohort.			Tags:
D CHI-focused	Acetate, Larreotide Acetate, Larreotide Adachi, H				 Hepatablastoma in a child with a paternally-inherited ABCCB mutation and mosaic paternal uniparental disony. 11p causing fiscal congenital hyperinsul 	2013 European Journal of Medical Genetics	HeD 26	
CHI-related	Adachi, M Adachi, M		• 🗖 Laje,	Pablo; Palladino, Andrew A.;	Pancreatic surgery in infants with Bedwith-Wiedemann Syndrome and Hyperinsulnism	2013 Journal of Pediatric Surgery	Peb 26	Author Keywords: 18F-DCPA-PET/CT; ABCC8 gene; Congenital hyperinsuliniam
	Adhisivan, B. Adhisivan, B.		• 🗧 Faletr	za, Flavio; Snider, Kara; Shyng	Co-inheritance of two ABCC8 mutations causing an unvesponsive congenital hyperinsulinism: Clinical and functional characterization of two novel ABCC	2013 Gene	Peb 26	Type of Work:
Elsevier full-text publications	Adade, N S Adade, N S		• 🖬 Laje,	Pablo; States, Lisa 3.; Zhuan	Accuracy of PET/CT Scan in the diagnosis of the focal form of congenital hyperics dram	2013 Journal of Pediatric Surgery	Feb 26	JOLR
🛛 🕕 Sirolimus	Adade, N. Scott Adade, N. S		• Dzata	a, Enyo	Congenital Hyperinsulnian Associated With Bedwith Wedemann Syndrome	2012 Journal of Pediatric	Feb 26	URL:
Ji olinus	Agarwal, Anil Accarwal, Sameey				. Pood aversion among patients with persistent hyperinsulinemic hypoglycemia	Nursing 2012 Journal of Pediatric	Peb 26	Add UL
Sirolimus in CHI	Aguayo, Anbal Agular Gryan, L		TEL CON		of infancy	Surgery		Catalog IDs
	Agular-Bryan, L. Agular-Bryan, Lydia				 Pancreatic head resection and Roux-en-II pancreaticoje)unostomy for the treatment of the focal form of congenital hyperinsulnism 	2012 Journal of Pediatric Surgery	Peb 28	Ariter ID: DOI: 10.1016/j.gene.2015.07.012
Sirolimus: insulin sensitivity and resistance	Agular Gryan, L Ahmad, Ayesha		• 🖻 Starie	ley, Charles A.	Two genetic forms of hyperinsulinemic hypoglycemia caused by dysregulation of glutamate dehydrogenase	2011 Neurochemistry International	Feb 26	255Hi 18790038
Sirolimus: insulin synthesis and release	Ahmad, Ihab A. Ahmad, Mohammad		Qubb	sej, Wafa; Al-Swaid, Abdulrah	First successful application of preimplantation genetic diagnosis and haplotyping for congenital hypernsulnism	2011 Reproductive BoMedicine Online	Feb 25	PMID: 25152674

ScienceDirect Mendeley

Creating a comprehensive view of CHI with Elsevier R&D Solutions

- CHI Library
- Disease, Target, Pathway, and Compound Analysis
- Research Landscape Analysis

Information Assets Applied

Content

Elsevier's vast set of literature and patent data

Data normalization

Taxonomies and dictionaries to normalize author names, institutions, drugs, targets, and other important terms

Information extraction

Finding semantic relationships, targets, pathways, drugs, and bioactivities

CHI: summarization and visualization of the findings

Building and refining the disease model

CHI: Building and refining the disease model

- Insulin secretion steps
 affected by CHI
- Role of mutated genes
- Drug targets
- Drugs

Approved compounds that may treat CHI

- Each binds to one or more targets related to the disease
- Can easily be obtained and tested in preclinical studies
- List includes compounds known to treat hyperinsulinism

Molecule	N	Numberin Group	Reaxys Registry Number (IDE.XRN)	Target	pX (DAT.PAURE US)_Median	Chemical Name (IDE.CN)
aigue	125	5	9364276	AKT1 ROCK1 IGF1R SGK1 FAK	7.1300 6.3400 6.2550 6.4750 6.3600	N-[2-(diethylamino)e [3H]-Sunitinib Sunitinib 5-(5-Fluoro-2-oxo-1, sunifinib sunitynib SU 11248
tail	136	4	11751576	AKT1 JNK1 ROCK1 SGK1	7.1100 7.8300 7.3800 7.4200	[r4C_hoursamb Motesanib N-(2,3-dihydro-3,3-d N-(3,3-dimethylh-2,3 N-(3,3-dimethylhod) Auc. 706.
	193	3	9305136	JNK1 ROCK1 IKKb	7.9600 7.2500 7.9200	Lestaurtlinib (93-99.109,120))-2, CEP-701 CEP701 lestaurtlinib
200	231	3	18476426	INSR ROCK1 IGF1R	7.5100 6.2000 7.6200	Linstinib OSI-306 dis-348-amino-1-(2 linstinib dis-348-amino-1-(2 dis-348-amino-1-(2
$\phi \phi \phi \phi$	366	2	11300181	Dipeptidyl peptidase 4 Dipeptidyl peptidase 4 Dipeptidyl peptidase 8 Dipeptidyl peptidase 2 Dipeptidyl peptidase 9		(rac, jemagupun GJH, Linagliptin Linagliptin 1-(4-methy-lquinazo 4-(3(R)-aminopiperid Tradjenta ® Tradjenta ®
	1133	2	5848501	TNF FRAP	7.2900 8.1550	[14C]-Rapamycin Rapamycin Sirolimus RAPAMTJNE® RAPAMUNE® temsirolimus NSC-226080

From pathways to treatments

Automated analysis to combine disease data with drug data

19752219 ID{1000000,8803116=liver} also resulted in

16644916 ID{1000000.8803116=hepatic} ID{9000000.9012899=insulin 16214940 resistance}, and peripheral ID{9000000.9012899=insulin 16214940 resistance} (Michael et al. 2000, Baudry et al. 2002, Mauvais-

17018838 ID{9000000.9010758=hyperinsulinemia}.

10194465 Jarvis et al 2002 Fisher & Kahn 2003

- literature references
- Full relationship • information

•

From pathways to treatments

Automated analysis to combine disease data with drug data

From pathways to treatments: PipelinePilot implementation combines data sources

n

Automated analysis combines bioassay data with text-mined data

From pathways to treatments: adjusting workflow

TARGETS

- Types of connections to a disease
- Place in a disease model
- Supporting evidence (good or bad)
- Adverse events
- Target class/localization
- Overall connectivity
- Biomarkers
- Signature-based
- Role in processes associated with a disease

DRUGS

- Drugs approved/passed safety
- Potential off-target activity
- Metabolism/transport
- Polypharmacology
- New drugs

Summary

- Used extensive Elsevier's content, tools and capabilities to provide information about a rare disease:
 - Literature-extracted biology data to find targets and summarize what is known about the disease mechanism
 - Bioactivity data to find drugs that target those targets
 - Normalized names of authors and institution to find collaborators/research centers
- Once the output of interest is decided, answer generation can be automated: Provide a disease name and get:
 - List of targets with supporting information
 - Sorted list of approved drugs with supporting information
 - KOLs and institutes

PATHWAY ANALYSIS FOR PERSONALIZED ONCOLOGY

Central dogma 2017: How to measure protein activity?

SNEA: sub-network enrichment analysis

- Calculates protein activity from the observed changes of its downstream targets

SNEA	Reverse Causal Reasoning
Mann-Whitney enrichment test	Fisher's overlap test

Lower p-value (more significant)

36

FLSEVIER

- SNEA builds networks from all genes/proteins measured in the experiment using all relations in the database.
- SNEA can include indirect regulation i.e. expression regulatory cascades consisting of 2-3 steps
- Significant network centers may be found that are not measured in the primary dataset
- No prior curation of gene sets is required.
- Can work with partial information about TF targets. Does not require knowledge about all targets for TF
- P-value is sensitive to the size of the chip

Molecular networks in microarray analysis. Sivachenko A, Yuryev A, Daraselia N, Mazo I. J Bioinform Comp. Biol.

Higher p-value (less significant)

www.wakeforest-personalized-hemonc.com

11635 Northpark Drive, Suite 250, Wake Forest, NC 27587

Gene expression profiling for targeted cancer treatment

Luminita Castillos¹, PhD, MBA, Francisco Castillos¹, III, MD and Anton Yuryev², PhD

¹Personalized Hematology-Oncology of Wake Forest, PLLC, NC 27587, USA

²Elsevier, MD 20852, USA

expression regulators and Cell processes identified

by SNEA in lung cancer patient

ELSEVIER

Common misconception:

Pathway activity **E** Differential Expression of its components

Pathway activity **Differential Expression of its expression targets**

Pathway Activity signatures identify targets for anti-cancer drugs

Hanahan & Weinberg. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74

Major steps to calculate pathway activity signature

- 1. Calculates major expression regulators from the expression of their targets
- 2. Maps major expression regulators on cancer pathway collection
- 3. Calculate pathway activity signature
 - 1. Pathway activity signatures are short and therefore can classify patients better
 - 2. Pathway activity allow selection of drugs inhibiting the active pathway(s) instead of inhibiting single target

Cancer pathways: Insights to cancer biology

EGFR activation by apoptotic clearance (wound healing pathway)

How to select anti-cancer drugs in Pathway Studio

Precision Oncology

Personalized Hematology – Oncology OF WAKE FOREST

Lung met No lung met before treatment

R&D Solutions

Thank you

www.elsevier.com/rd-solutions